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An approach to the direct measurement of the dynamic Young's modulus for
a viscoelastic material using a contactless sensor, based on a laser emitter}receiver,
is presented in this paper. The proposed method consists in exciting a cantilever
beam specimen by means of a seismic acceleration. The acceleration of the base is
recorded by means of a piezoelectric accelerometer, and the vertical displacement
of a suitable point of the specimen is recorded by means of an accurate laser sensor.
Using a contactless sensor avoids introducing any perturbation due to contact
that could locally change the mechanical properties of the material. This enables
one to accurately determine Young's modulus as a function of frequency.
A mathematically accurate treatment of the experimental measurement of Young's
modulus is also presented, yielding a "nal expression for E (iu) as a function of the
two measured entities, namely the acceleration of the base and the vertical
displacement of an adequate point of the specimen. Experimental curves of
Young's modulus at di!erent temperatures are reported.

( 2000 Academic Press
1. INTRODUCTION

According to the theory of viscoelasticity [1}3] the mechanical behavior of an
isotropic viscoelastic material can be completely de"ned by means of two
characteristic parameters. Such parameters are dependent on the environmental
and operating conditions, and particularly on frequency and temperature.

Usually, the two characteristic parameters that are measured at di!erent
temperatures and frequencies are two moduli (e.g., Young's and shear modulus,
etc.), or one modulus and the Poisson ratio. Then, the elastic}viscoelastic
correspondence principle allows one to compute all the other characteristic
parameters by means of relations that are formally identical to those of the theory
of elasticity.
0022-460X/00/151339#15 $35.00/0 ( 2000 Academic Press
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Much relevant work was done in the past decades regarding the direct
measurement of Young's modulus and of other characteristic moduli of a material.

Gottenberg and Christensen [4] described an experimental technique to
determine the complex shear modulus of a linear, isotropic, viscoelastic solid and its
dependence on frequency and temperature.

Pritz [5}8] did relevant work on the measurement of Young's modulus. In
reference [5] he described an investigation of the complex modulus of acoustic
materials by using a transfer function method. In this method, a cylindrical or
prismatic specimen is excited into longitudinal vibration at one end, the other end
being loaded by a mass, so as to realize a spring-like specimen. Then, the specimen
is modelled by lumped parameters mechanical elements and the transfer function of
the specimen from the excited end to the loaded one is theoretically investigated
and experimentally measured. In references [6, 7], Pritz theoretically investigated
and experimentally measured the complex modulus of an acoustic material by
considering a rod-like specimen being excited by a shaker at one end. Again, the
transfer function measured is used, which involves the measurement of the
vibration amplitudes at the specimen ends and the phase angle between them. More
recently, the same technique has been used in reference [8] to measure the dynamic
Young's modulus and the loss factor of plastic foams for impact sound isolation.

Holownia [9] presented a technique, based on holographic interferometry, to
measure the dynamic Young's modulus and the dynamic bulk modulus for rubbers,
so as to obtain a thorough knowledge of such materials, and particularly of the
Poisson ratio, which is di$cult to be measured directly. A later work by Holownia
and Rowland [10] described the measurement of the dynamic bulk modulus for
rubbers by using a technique called Electronic Speckle Pattern Interferometry
(ESPI). The measurement of bulk modulus was achieved by direct measurements of
the volume contractions of submerged specimens subjected to sinusoidal pressure
changes.

Sim and Kim [11] presented a method to estimate the properties of viscoelastic
materials for "nite element method application. A "rst estimate of Young's
modulus and of the loss factor of a viscoelastic material were "rst derived from the
transmissibility measurements made on a specimen. Then, a "rst estimate of the
Poisson ratio (assumed constant with frequency) was obtained on the basis of
a theoretical development. Then, Young's modulus and the Poisson ratio were
evaluated after an iterative process.

OG deen and Lundberg [12] presented a method for determination of the complex
modulus of a linearly viscoelastic material from measured endpoint accelerations of
an impact-loaded rod specimen. Young's modulus was obtained by an iterative
numerical scheme. Trenda"lova et al. [13] used the same technique, but measured
the displacements, instead of the accelerations, of the specimen ends by means of
electro-optical transducers. Ostiguy and Ewan-Iwanowski [14] used a laser
vibrometer for measurement of the complex Young's modulus of linear viscoelastic
solids.

This paper presents an approach to the direct measurement of the dynamic
Young's modulus of a viscoelastic material by using a contactless sensor, based on
a laser emitter}receiver. A small specimen is mounted on to an electrodynamic
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shaker and seismically excited by a sine-sweep input signal so as to bend under the
boundary conditions of a cantilever beam. The acceleration of the base is recorded
by means of a piezoelectric accelerometer, and the vertical displacement of
a suitable point of the specimen is recorded by means of an accurate laser sensor. In
this way, no load e!ect perturbation is introduced in the measurement chain by any
sort of contact sensor (such as a strain gauge) that could locally change the
mechanical properties of the material. This enables one to determine accurately.
Young's modulus as a continuous function of frequency. Moreover, the
measurements are carried out in a temperature controlled chamber, so as to obtain
several curves of Young's modulus at di!erent temperatures.

2. THEORY OF YOUNG'S MODULUS FROM MEASUREMENTS
IN A BEAM-LIKE SPECIMEN USING A CONTACTLESS SENSOR (LASER)

In this section a theoretical discussion about how Young's modulus can be
obtained, by experimental measurements in a beam-like specimen seismically
excited by a sinusoidal force input, is carried out. It is shown that Young's modulus
can be determined by simultaneously measuring the vertical displacement of
a suitable point of the bending beam and the acceleration of the supporting
basement.

First, it should be recalled that Young's modulus E(t) for an isotropic material is
de"ned as

p(t)"P
t

~=

E(t!q)
de(q)
dq

dq, (1)

where p(t) is the stress and e(t) the strain in condition of uniaxial stress relaxation
conditions. The strain history can be speci"ed as a harmonic function of time,
according to

e(t)"e
0
e*ut, (2)

where e
0

is the amplitude and u is the oscillation frequency. Then, E(t) must be
decomposed into the sum of an asymptotic constant term E

=
and a time-variable

one E@(t),

E(t)"E
=
#E@ (t), (3)

where E@(t)P0 as tPR. Such a decomposition is necessary to obtain an
expression for the complex Young's modulus whenever the viscoelastic body is
subjected to steady state oscillatory conditions. As a matter of fact, it can be proved
[1] that the expression for Young's modulus in the frequency domain can be
obtained by substituting equations (2) and (3) into equation (1):

p(t)"E
=

e
0
e*ut#iue

0P
t

~=

E@(t!q)e*utdq. (4)
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With the change of variable t!q"g, equation (4) can be rewritten as

p(t)"CE=
#iuP

=

~=

E@(g)e~*ugdgD e
0
e*ut. (5)

To be consistent with the steady state conditions assumed for strain history, the
stress will be taken to have the same steady state form,

p(t)"E(iu)e
0
e*ut, (6)

and "nally, upon introducing complex numbers,

E(iu)"p (iu)/e(iu). (7)

Thus, from equations (5), (6) and (7), the complex Young's modulus, E(iu) results

E(iu)"E
=
#iuE @(iu). (8)

However, equation (8) is not of practical use, since stress measurements cannot be
easily and accurately performed. It is then necessary to obtain a practical
expression for Young's modulus, which can be computed from experimental
measurements carried out in a laboratory.

The equation of a seismically excited beam is

m
L2u(x, t)

Lt2
#J P

t

~=

E(t!q)
L
Lt

L4u(x, t)
Lx4

dq"!ma
b
(t), (9)

where m is the mass per unit length of the beam, u"u (x, t) is the relative vertical
displacement from the non-deformed con"guration, J is the moment of inertia, E(t)
is the relaxation function for Young's modulus of the specimen and a

b
(t) is the

absolute vertical acceleration of the supporting basement.
Modal decoupling of equation (9) can be done by using a complete eigenfunction

expansion,

u(x, t)"
=
+
i/1

/
i
(x)q

i
(t), (10)

and by integrating over the free length

P
L

0

m/
i
/

i
dxqK

i
#J P

L

0

/
i

d4/
i

dx4
dx AP

t

~=

E(t!q)
dq

i
dq

dqB"!ma
b P

L

0

/dx. (11)

Now, by setting

P
L

0

/
i

d4/
i

dx4
dx"

c
i

m
"

b4
i

m¸4
, P

L

0

m/
i
dx"B

i
, (12)
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where the b
i
represent the solutions of the frequencies equation and the B

i
are the

model loads for a unit acceleration of the base, the modal decoupled equations can
be obtained in the form

qK
i
#J

b4
i

m¸4 P
t

~=

E(t!q)
dq

i
dq

dq"!B
i
a
b
(t). (13)

Expression (13) in the frequency domain can be obtained in a similar manner as
equations (7) and (8), namely,

A!u2#J
b4
i

m¸4
E(iu)B q

i
(iu)"!B

i
a
b
(iu). (14)

Equation (14) can be rearranged so as to get an expression for Young's modulus as
a complex number:

E(iu)"!B
i

m¸4

Jb4
i

a
b
(iu)

q
i
(iu)

#

m¸4

Jb4
i

u2. (15)

Now, the model co-ordinate q
i
must be expressed in terms of a measurable entity. If

a strain gauge is employed in the experimental set-up, the strain at a suitable point
of the specimen can be measured. In our "rst experimental tests we used a stain
gauge, but the results were not satisfactory because the glue fastening the gauge to
the specimen caused a local sti!ening of the material, which heavily a!ected the
measurements (see section 3 for further details). Therefore, a contactless sensor had
to be used. A laser sensor was chosen for this purpose. The entity the laser measures
is the absolute local vertical displacement of the specimen, hence, the modal
co-ordinate q

i
in equation (15) must now the expressed in terms of the absolute

displacement u measured by the laser sensor (see Figures 1 and 2 for reference).
Upon recalling equation (10) and assuming that the second eigenmode is not

excited due to the particular positioning of the laser at a distance d from the
clamped edge of the beam, and that the higher order modes can be neglected
(because their amplitude greatly decreases by increasing the order, as shown in
Appendix A), it can be written as

u(d, t)"
=
+
i/1

/
i
(d)q

i
(t)"

=
+
i/1

D
i
q
i
:D

1
q
1
(t) with D

1
"/

1
(d), (16)

where d, i.e., the distance of the point where the laser is positioned from the clamped
edge of the beam, is de"ned as meeting the requirement: /

2
(d)"0.

In the frequency domain, equation (16) is written as

u (iu)"D
1
q
1
(iu). (17)



Figure 1. Specimen characteristics.

Figure 2. Set-up of the cantilever beam, the support and the shaker.
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Thus,

a
b
(iu)

q
1
(iu)

"D
1

a
b
(iu)

u(iu)
. (18)

Then, by substituting equation (18) into equation (15), one obtains

E(iu)"!B
1
D

1

m¸4

Jb4
1

a
b
(iu)

u(iu)
#

m¸4

Jb4
1

u2 . (19)



MEASUREMENT OF YOUNG'S MODULUS 1345
Now, u (iu) is the relative displacement of the specimen. Upon recalling that the
laser measures an absolute displacement u

L
(iu) and letting s

b
(iu) be the

displacement of the base (see Figure 2), it can be written as

u
L
(iu)"u(iu)#s

b
(iu)"u(iu)#a

b
(iu)/(iu)2, (20)

and thus

u(iu)
a
b
(iu)

"

u
L
(iu)

a
b
(iu)

#

1
u2

. (21)

By substituting equation (21) into equation (19), one obtains

E(iu)"!B
1
D

1

m¸4

Jb4
1
A
u
L
(iu)

a
b
(iu)

#

1
u2B

~1
#

m¸4

Jb4
1

u2. (22)

Equation (22) can now be rearranged, so as to make it independent of the
dimensions and the inertial characteristics of the beam. This can be done as shown
in the following, by introducing as many dimensionless parameters as possible.
A set of normalization parameters w

i
can be introduced, so that a set of normalized

eigenfunctions /
i
(x) can be de"ned

/
i
(x)"

1

Jm¸

w
i
/K
i
(x). (23)

Here /)
i
(x) are the non-normalized eigenfunctions and w

i
"J1/:1

0
/) 2
i
(y) dy .

A dimensionless co-ordinate y"x/¸ can also be introduced.
Now, the B

i
in equation (12) and D

i
in equation (16) can be rewritten as

B
i
"P

L

0

m/dx"mL P
1

0

/
i
(y) dy"m¸

1

Jm¸

w
i P

1

0

/)
i
(y) dy"Jm¸w

i
t
i

(24)

D
i
"/

i
(d)"

1

Jm¸

w
i
/K

i
(d)"

1

Jm¸

w
i
r, (25)

by setting t
i
":1

0
/K

i
(y) dy and r

i
"/)

i
(d/¸).

Finally, upon recalling that for a squared-section beam m/J"12ohb/bh3"
12o/h2, the "nal expression for E(iu) as a function of the vertical absolute
displacement (measured by the laser sensor) and the acceleration of the basement
(measured by the accelerometer) can be written as

E(iu)"
o¸4

h2 CF1 A
u
L
(iu)

a
b
(iu)

#

1
u2B

~1
#F

2
u2D , (26)
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where the dimensionless parameters F
1

and F
2

are given by F
1
"!12w2

1
t
1
r
1
/b4

1
,

F
2
"12/b4

1
.

By applying equation (26) to the case of a cantilever beam (see Appendix A), the
expression to obtain Young's modulus of the tested specimen can be obtained

E(iu)"
o¸4

h2 C!1)0686 A
u
L
(iu)

a
b
(iu)

#

1
u2B

~1
#0)9707u2D . (27)

Some care should be taken when applying the method described above, since the
useful frequency range is a frequency interval centered at the resonance frequency
of the specimen. The resonance frequency of the specimen used in the experimental
tests varies with the test temperature, ranging from 224 (at a temperature of 463C)
to 307 Hz (at a temperature of 83C). The frequency interval from 150 to 400 Hz
turned out to be the useful frequency range of the method. Outside this interval
some errors could a!ect the results. For instance, at higher frequencies the so-called
&&plate e!ect'' of the specimen could introduce an error in the measurement. The
plate e!ect for a specimen can be qualitatively explained as follows: if a beam is
excited in bending at increasing frequency, the &&wavelength'' of the displacement
con"guration becomes shorter and the width-to-wavelength ratio increases. Hence,
the more the excitation frequency increases, the more the behavior of the specimen
is di!erent from that of an ideal beam, to which the theory in this paper refers. For
a complete proof of this fact, the interested reader can refer to a previous work of
one of the authors [15].

3. EXPERIMENTAL RESULTS

Measurements of the complex dynamic Young's modulus have been carried out
for a viscoelastic material, namely a mixture of polypropylene and calcium
carbonate. A beam-like specimen (see Figure 1) has been mounted onto an ad hoc
support and fastened at one extremity, so as to realize a cantilever beam (see Figure
2). The support with the specimen has been mounted onto an electrodynamic
shaker set inside a temperature-controlled chamber and excited by means of
a sine-sweep acceleration. In this way, several curves of Young's modulus at
di!erent temperatures can be obtained.

A scheme of the whole measurement system is depicted in Figure 3.
The temperature-controlled chamber is implemented by means of a closed ring

insulated with polyurethane in order to minimize the thermal dispersion.
A refrigerator and a resistor are located inside the ring; the driving voltage of the
resistor is modulated so as to realize a temperature control by means of
a microprocessor and an I/O board. The temperature transducer is a thermometric
probe HD8605 by DeltaOhm, which outputs a voltage signal proportional to the
air temperature. This signal is sent through a National Instrument AT-MIO-
16 I/O board to a PC, where a dedicated program in the Labview environment
implements the temperature control. The temperature range for the measurements
goes from 83C (lower bound due to the thermal dispersion of the chamber) to 463C



Figure 3. A scheme of the whole measurement system.
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(higher temperatures could damage the specimen and the laser sensor, which is to
be located right above the specimen, inside the chamber).

The measurement chain is composed of an electrodynamic shaker with a sweep
controller, a specimen of the viscoelastic material mounted onto a suitable support,
an accelerometer, an optical sensor (laser) for contactless measurement of
displacement and a dynamic analyzer software.

The electrodynamic shaker used in a commercial MB Dynamics PM25. The
sweep controller is a commercial BruK el & Kjaer 1047A which drives the
electrodynamic shaker. The range of frequency on which the sweep is carried out
goes from 150 to 400 Hz. For each test at any temperature, a sweep up and a sweep
down are made and averaged, so as to reduce the measurement errors.

The specimen support is a cup in aluminum, adequately designed and realized, to
which a cantilever beam (the specimen) is fastened by means of glue. The choice of
a cantilever beam, i.e., a beam with clamped-free boundary conditions, fastened to
the support, is the result of many years of tests. As a matter of fact, at the beginning
the tests were carried out with the specimen set as a beam with pinned}pinned
boundary conditions, exactly as one of the authors did in a previous work [15] in
order to perform a direct measurement of the Poisson ratio of a viscoelastic
material. However, such boundary conditions turned out to be inadequate to
perform a direct measurement of the dynamic Young's modulus by using the
method described in this paper, because the counteracting screws used to realize the
pinned}pinned conditions introduced some frictions, which remarkably a!ected
the experimental measures. Thus, the boundary conditions were changed and
a clamped}clamped beam mounted on the cup support by means of clamps was
realized. Another problem then arose, since the di!erence between the thermal
expansion coe$cient of the specimen and the one of the support caused the beam to
bend at the highest test temperatures (greater than 353C), thus basically
invalidating the measurement. Hence, another con"guration was tried, namely
a cantilever beam "xed to the support at one end by means of a clamp, but this did
not work, either, because the boundary conditions were not repeatable, depending
on the torque the clamp applied to the beam end in any single test. Finally, the most
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suitable con"guration turned out to be a cantilever beam with the "xed end glued
to the support. This kind of fastening realized the clamped boundary condition
with good accuracy and repeatability.

The specimen used in the tests is made of a viscoelastic material (a mixture of
polypropylene and calcium carbonate), and its physical features are: 3)2 mm height,
7)15 mm, width 61)5 mm free length; 1235 kg/m3 density (see Figure 1). The
specimen is excited by the shaker, and it is subject to a bending inertia load.
A piezoelectric accelerometer set on the edge of the support measures the
acceleration of the base, which is required to determine Young's modulus
according to equation (27). A laser sensor measured the absolute displacement of
the specimen at a certain point, namely at a distance for which the second
eigenmode yields a null relative displacement (see Figure 2). In this way the error
made by approximating the whole eigenfunction expansion with the "rst
eigenmode only is reduced. For a cantilever beam, the second eigenmode is zero at
a distance from the fastened extremity equal to 0)7834 times the free length of the
beam (see Appendix A).

The laser sensor is employed in our experimental apparatus in order to measure
small displacements without contact. As a matter of fact, a major problem
encountered in the past years while trying to perform accurate measurement of the
complex dynamic Young's modulus was due to the fact that a strain gauge was used
to measure the deformation of the specimen. However, the glue used to fasten the
stain gauge to the beam caused a local sti!ening of the specimen, thus making the
measurement of Young's modulus inaccurate. The existence of this problem was
highlighted by some bending tests, which showed that a double grid stain gauge
glued to the specimen did locally increase the sti!ness of the viscoelastic material by
more than 8%.

Hence, a contactless sensor was used, namely a low-cost emitter}receiver laser
sensor by MicroEpsilon Type OptoNCDT series 1605-2 (output power: 1 mW). Its
(static) resolution is 0)5 lm on a measurement range of $1 mm. The measurement
of this sensor is based on triangulation; the output is an analog voltage signal
linearly proportional to the measured displacement in the range $10 V.

An accurate calibration of the laser sensor was done before the tests. The
calibration procedure consisted in setting the accelerometer on the electrodynamic
shaker, and the laser sensor right above it, in such a way that they measured the
same dynamic entity, namely the vertical displacement of the shaker top. The
output of the laser sensor was then compared with the output of the accelerometer,
integrated twice, in order to determine the characteristics of the laser sensor. It was
veri"ed that the laser sensor used did not introduce any signal distortion, but just
a linear phase delay (d

lin
"6)385]104 rad/Hz) and a slight constant reduction of

the absolute value of the signal (K
red

"0)984). These errors were then easily
corrected by the analyser software.

A second cantilever beam of the same viscoelastic material, identical to the one
tested, but instrumented with a strain gauge, was mounted onto the support. Its
purpose is just to provide a feedback signal, namely the longitudinal strain of the
beam, to the sweep controller that drives the shaker. The control value of the
longitudinal strain was set at 20 lm/m. Other tests, carried out with a control



Figure 4. The experimental set-up.
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values of 10 and 30 lm/m, yielded identical results, thus ensuring the linearity of the
tested material.

Finally, the dynamic analyzer is a dedicated software, realized by the authors,
running on a PC in a Labview environment. The measurement signals are input to
the PC through a National Instrument AT-A2150 I/O board, allowing four
simultaneous signals without multiplexing. Such integrals are analyzed and
elaborated by the software, so as to get curves of Young's modulus at di!erent
temperatures.

Figure 4 is a picture of the experimental set-up, with the laser sensor above the
specimen and the accelerometer set on the specimen support. The support is
located on the shaker top, inside the temperature controlled chamber. The presence
of the second identical cantilever beam fastened to the support can also be noticed.

Figure 5 and 6 show the experimental results of the measurement of Young's
modulus for the tested specimen. The curves in Figure 5 represent the absolute



Figure 5. Absolute values of Young's modulus of a viscoelastic material at di!erent temperatures.

Figure 6. Loss factors of Young's modulus of a viscoelastic material at di!erent temperatures.
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values of Young's modulus for the tested material at di!erent temperatures as
a function of frequency. The test temperatures are: 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30, 32, 34, 36, 38, 40, 42, 44 and 463C. It results that the experimental data of
Young's modulus are not in contrast with the theoretical behavior described for



MEASUREMENT OF YOUNG'S MODULUS 1351
instance in reference [2]. In fact, the curves of the absolute values have higher
values for lower temperatures; conversely, the curves at higher temperatures have
lower values. Moreover, the absolute values of Young's modulus at all
temperatures increase with frequency. The curves in Figure 6 represent the loss
factors of Young's modulus for the tested material as a function of frequency. For
sake of clarity, only a few curves have been reported, using a step of 103C. It can be
noticed that, for the viscoelastic material considered, the loss factors are very small,
ranging from 0)035 to 0)070. The fact that the loss factor is very low also explains
why some &&#uctuation'' is observed in the experimental curves: namely, the
unavoidable measurement errors a!ect more the loss factors than the absolute
values, the former being very small in value.

4. CONCLUSIONS

This paper has presented an approach to the measurement of the dynamic
Young's modulus for a viscoelastic material by using a contactless sensor, based on
a laser emitter}receiver. The proposed method consists in exciting a cantilever
beam specimen by means of a seismic acceleration. The acceleration of the base is
recorded by means of a piezoelectric accelerometer, and the vertical displacement of
a suitable point of the specimen, in order to isolate the contribution of the
fundamental mode, is recorded by means of an accurate laser sensor. Using
a contactless sensor avoids introducing any perturbation due to contact that could
locally change the mechanical properties of the material. This enables one to
accurately determine Young's modulus as a function of frequency. Moreover, the
measurements are carried out in a temperature controlled chamber, so as to obtain
several curves of Young's modulus at di!erent temperatures.

A mathematically accurate treatment of the experimental measurement of
Young's modulus has also been presented, yielding a "nal expression for E(iu) as
a function of the two measured entities, namely the acceleration of the base and the
vertical displacement of an adequate point of the specimen.

The experimental set-up has been described in detail, and the experimental
curves of Young's modulus at di!erent temperatures have been reported.
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APPENDIX A

Given the general expression for the eigenfunction for a beam,

/K
i
(x)"CK

i1
sinh Abi

x
¸B#CK

i2
coshAbi

x
¸B#CK

i3
sinAbi

x
¸B#CK

i4
cosAbi

x
¸B, (A1)

the "rst eigenfrequencies can be obtained by considering the four boundary
conditions and by solving the characteristic equation associated with them. In the
case of a cantilever beam, the characteristic equation is

cosh (b) cos (b)#1"0, (A2)

and its solutions are

b
i
"1)8751, b

2
"4)6941, b

3
"7)8548, b

4
"14)1372. (A3)

By arbitrarily setting: CK
i1
"1, the values of the CK

ij
coe$cients can be computed, by

solving the linear system
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For the fundamental mode of vibrations, the values are

C)
11
"1, CK

12
"!1)3622, CK

13
"!1, CK

14
"1)3622.

Then the entities de"ned in section 2 can be computed, namely
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/) 2

1
(y) dy"0)7341, t

1
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1

0

/)
i
(y) dy"!1)0666. (A5, A6)

According to equation (A1), the distance d from the fastened end of the beam, where
the laser has to be positioned, so that the second mode of vibration is null, can be
obtained by the equation

CK
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sinh Ab2

d
¸B#CK

22
coshAb2

d
¸B#CK

23
sinAb2

d
¸B#CK

24
cosAb2

d
¸B"0. (A7)

that yields: d"0)7834¸, ¸ being the free length of the beam.
Finally r

1
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1
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"!12w2

1
t
1
r
1
/b4

1
"!1)0686 and

F
2
"12/b4

1
"0)9707.

Knowing the b
i
coe$cients also enables one to evaluate the in#uence of higher

modes on the vibration of a cantilever beam, with respect to the fundamental mode.
It is known that the amplitudes of the higher modes are inversely proportional to
the squared natural frequency of the mode, or to the fourth power of the
b
i
coe$cient of that mode.
For the second mode: u2

1
/u2

2
"b4

1
/b4

2
"2)55%. However, the second vibratory

mode is not present in our measurement of the beam displacement because the laser
is positioned at a distance d from the clamped edge of the beam where such a mode
is null, so that /

2
(d)"0.

The in#uence of higher modes on the beam vibration decreases very rapidly. In
fact, for the third mode u2

1
/u2

3
"b4

1
/b4

3
"0)32% and for the fourth mode:

u2
1
/u2

4
"b4

1
/b4

4
"0)03%.
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